g Technical Report CERC-95-1
February 1995

US Army Corps

of Engineers
Waterways Experiment
Station

Reef Breakwater Design
for Burns Waterway Harbor, Indiana

by Hugh F. Acuff, Robert R. Bottin, Jr.

Approved For Public Release; Distribution Is Unlimited

19950329 (25

Prepared for U.S. Army Engineer District, Chicago




The contents of this report are not to be used for advertising,
publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use
of such commercial products.

”~
%«  PRINTED ON RECYCLED PAPER




Technical Report CERC-95-1
February 1995

Reef Breakwater Design
for Burns Waterway Harbor, Indiana

by Hugh F. Acuff, Robert R. Bottin, Jr.

U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS  39180-6199

Final report
Approved for public release; distribution is unlimited

Prepared for U.S. Army Engineer District, Chicago
Chicago, IL 14207




US Army Corps
of Engineers
Waterways Experiment
Station

N

7

GEOTECHNICAL |
LABORATORY

numuzumns\
BUILDING

COASTAL ENGINEERING
r RESEARCH CENTER

/A
} 74

~ y FOR INFORMATION CONTACT :
ENVIRONMENTAL PUBLIC AFFAIRS OFFICE
LABORATORY U. S. ARMY ENGINEER
WATERWAYS EXPERIMENT STATION
3909 HALLS FERRY ROAD
VICKSBURG, MISSISSIPP! 38180-6199
PHONE : (601)634-2502
STRUCTURES
LABORATORY
SCALE
500 [ 500 m
[ ——— ———| ]

AREA OF RESERVATION = 2.7 sq km

Waterways Experiment Station Cataloging-in-Publication Data

Acuff, Hugh F.

Reef breakwater design for Burns Waterway Harbor, Indiana / by
Hugh F. Acuff, Robert R. Bottin, Jr. ; prepared for U.S. Army Engineer
District, Chicago.

89 p. :ill. ; 28 cm. — (Technical report ; CERC-95-1)

Includes bibliographic references.

1. Breakwaters — Indiana — Design and construction. 2. Burns Har-
bor (Ind.) — Design and construction. 3. Hydrodynamics — Indiana.

4. Hydraulic models — Indiana — Design and construction. |. Bottin,
Robert R. II. United States. Army. Corps of Engineers. Chicago District.
lll. U.S. Army Engineer Waterways Experiment Station. 1V. Coastal Engi-
neering Research Center (U.S.) V. Title. VI. Series: Technical report
(U.S. Army Engineer Waterways Experiment Station) ; CERC-95-1.

TA7 W34 no.CERC-95-1




Contents

Preface . . o e e e e e e e e e iv

Conversion Factors, Non-SI to SI (Metric) Units

OFf MEaSUICINCIIL & . . o o ot e e e e e e ettt e ee ettt eee et v
I—INtroduction . . . . ... . i e e e 1
The ProtOLYPE . . o o v ot e et et it it e et 1
The Problem . . .. .. e e e e e e e e 1
Purpose of Model Study . . ... ... 3
Wave-Height Criteria . . .. ........ .. ... ... i 5
2—The MOl . . ..ot e e e e e e 6
Designof Model .. ...... ... i 6
The Model and Appurtenances . ..............c.cooueiieenn . 8
3—Test Conditions and Procedures . ... ....... ... 11
Selection of Test Conditions . . .. . . . i it i it ittt e 11
Analysisof Model Data . . ........ ... ... .., 14
4 Testsand Results . . ... .. ittt e e et i 16
The TeStS & o vt e et e e e e et e e e e e e e e e e 16
Test ReSULLS . . . v i it e e e e e e e et e e e 18
S—CONCIUSIONS . . o o s et e e e e et e e e e e e e e s 23
R eIeNCES . . i it e e e e e e e e e 25
Tables 1-7

Photos 1-60
Plates 1-10
SF 298




Preface

A request for a model investigation of wave conditions at Burns Waterway
Harbor, Indiana, was initiated by the U.S. Army Engineer District, Chicago
(NCC), in a letter to the U.S. Army Engineer Division, North Central (NCD).
Authorization for the U.S. Army Engineer Waterways Experiment Station
(WES) to conduct the study was subsequently granted and funds were autho-
rized by NCC on 15 September 1993.

Model tests were conducted at WES during the period February through
June 1994 by personnel of the Wave Processes Branch (WPB) of the Wave
Dynamics Division (WDD), Coastal Engineering Research Center (CERC)
under the direction of Dr. James R. Houston, Director, CERC, and
Mr. Charles C. Calhoun, Jr., Assistant Director, CERC. Direct guidance was
provided by Messrs. C. E. Chatham, Jr., Chief, WDD, and Dennis G. Markle,
Chief, WPB. Tests were conducted by Mr. Hugh F. Acuff, Ms. Bettye E.
Stephens, Mr. Larry R. Tolliver, Civil Engineering Technicians, and
Mr. William G. Henderson, Computer Assistant, under the direction of
Mr. Robert R. Bottin, Jr., Research Physical Scientist. This report was pre-
pared by Messrs. Acuff and Bottin.

During the course of the investigation, liaison was maintained by means of
telephone communication and monthly progress reports. Mr. Charlie Johnson,
NCD, visited WES and observed model operation during the course of the
investigation. Ms. Anne Smith and Mr. Eric Matthews were technical contacts
at NCC.

Dr. Robert W. Whalin was Director of WES during model testing and the
preparation and publication of this report. COL Bruce K. Howard, EN, was
Commander.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constinite an
official endorsement or approval of the use of such commercial products.




Conversion Factors,
Non-SlI to Sl Units of
Measurement

Non-SI units of measurement used in this report can
(metric) units as follows:

be converted to SI

Multiply By To Obtain
degrees (angle) 0.01745329 radians

feet 0.3048 meters

miles (U.S. statute) 1.609347 kilometers
square feet 0.09290304 square meters
square miles 2.5689998 square kilometers
tons (2,000 pounds, mass) 907.1847 kilograms




Chapter 1

1 Introduction

The Prototype

Bumns Waterway Harbor, Indiana, is a man-made harbor located on the
southern shoreline of Lake Michigan, approximately 20 miles! southeast of
Chicago, Illinois (Figure 1). Burns Harbor was primarily constructed to facili-
tate shipping materials to and from the steel industry in northern Indiana. The
Bumns Harbor structure includes a 4,600 ft rubble-mound north breakwater with
an east-west alignment, a 1,200 ft rubble-mound west breakwater with a north-
south alignment, and a cellular steel sheetpile extension connecting the west
breakwater to the shore (Figure 2).

The breakwater is a rubble-mound structure with a multi-layered random
placement design and a toe elevation of approximately -40 ft low water datum
(LWD)2 and a crest elevation of +14 ft. Armor stones are cut Indiana Bed-
ford limestone ranging from 10 to 16 tons on the trunk and 15 to 20 tons on
the head of the breakwater. An aerial photo of the harbor is shown in
Figure 3.

The Problem

Since completion of construction in 1968, the harbor has experienced two
problems. Maintenance of the crest elevation and structure cross section has
required the addition of large amounts of stone (average of 7,640 tons per year
for the first 19 years of operation). Rehabilitation history of the structure can
be found in Bottin (1988). In addition, unacceptable large wave conditions
within the harbor (recorded data show transmission coefficients as high as
25 percent) have led to instances of extensive damage to harbor facilities and
moored vessels.

1A table of factors for converting non-SI to SI units is presented on page v.

2 Al elevations (el) cited herein are in feet referred to low water datum (LWD), el 576.8 ft
above mean water level at Father Point, Quebec (International Great Lakes Datum, 1955).
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Figure 1. Project location
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Chapter 1

Figure 2. Layout of existing Burns Waterway Harbor structure

Purpose of the Model Study

At the request of the U.S. Ammy Engineer District, Chicago (NCC), a physi-
cal hydraulic model investigation was initiated by the U.S. Army Engineer
Waterways Experiment Station (WES) to:

a. Evaluate the effectiveness of a proposed segmented reef structure, ori-

ented lakeward of the existing breakwater, in reducing wave heights
reaching the existing breakwater.

Introduction




Figure 3. Aerial view of harbor

b. Optimize the crest width, length, and spacing of each segment of the
reef structure to minimize transmitted wave energy.

¢. Determine the optimum distance between the existing breakwater and
the reef structure relative to waves impacting on the existing

breakwater.

d. Evaluate the impact of the reef breakwaters on wave-induced currents
lakeward of the existing breakwater.

Chapter 1
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Prior to this investigation, a two-dimensional model study was conducted to
optimize the crest width, crest elevation, and armor stone size of the reef struc-
ture (Carver and Wright, in preparation).

Wave Height Criteria

For the purposes of the study, NCC specified that for an improvement plan
to be acceptable, maximum significant wave heights should not exceed:

a. 15 ft in the lee of the reef breakwaters for 19 ft incident wave
conditions.

b. 3 ft inside the harbor for 13 ft incident wave conditions.

¢. 1 ft inside the harbor for 5 ft incident wave conditions.

Chapter 1 Introduction




2 The Model

Design of Model

The Burns Harbor model (Figure 4) was constructed to an undistorted scale
of 1:75, model to prototype. Scale selection was based on the following

factors:

a. Depth of water required in the model to prevent excessive bottom

friction.

b. Absolute size of model waves.

¢. Auvailable shelter dimensions and area required for model construction.

d. Efficiency of model operation.

e. Available wave-generating and wave measuring equipment.

[ Model construction costs.

A geometrically undistorted model was necessary to ensure accurate repro-
duction of wave and current patterns. Following selection of the linear scale,
the model was designed and operated in accordance with Froude’s model law
(Stevens, et al. 1942). The scale relations used for design and operation of the

model were as follows:

Characteristic Dimension' Model to Prototype Scale Relations
Length L

Area L2 A = Lr2 = 1.5, 625

Volume L3 V, = L2 = 1:421, 875

Time T T, =L*%=1866

Velocity uT V,=L"%- 1866

! Dimensions are in terms of length (L) and time (T).

Chapter 2 The Model
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Figure 4. Model layout

Most of the existing breakwater at Burns Harbor, as well as the proposed
reef breakwaters, are rubble-mound structures. Experience and experimental
research have shown that considerable wave energy passes through the
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interstices of this type structure; thus, the transmission and absorption of wave
energy became a matter of concern in design of the 1:75 scale model. In
small-scale hydraulic models, rubble-mound structures reflect relatively more
and absorb, or dissipate, relatively less wave energy than geometrically similar
prototype structures (Le Méhauté 1965). Also, the transmission of wave
energy through a rubble-mound structure is relatively less for the small scale
model than for the prototype. Consequently, some adjustment in smail-scale
model rubble-mound structures is needed to ensure satisfactory reproduction of
wave reflection and wave-transmission characteristics. From previous investi-
gations (Dai and Jackson 1966, Brasfeild and Ball 1967) at WES, it was deter-
mined that a close approximation of the correct wave-energy transmission
characteristics could be obtained by increasing the size of the rock used in the
1:75 scale model to approximately one and one-half times that required for
geometric similarity. In constructing the rubble-mound structures in the Burns
Harbor model, rock sizes were computed linearly by scale, then multiplied

by 1.5 to determine the actual sizes to be used in the model.

The Model and Appurtenances

Due to funding constraints and high costs of construction, an existing
model with gentle sloping contours closely resembling offshore bathymetry in
the vicinity of Burns Harbor was used during testing. Adjustments to existing
model contours and water levels were made to locate the proposed Burns
Harbor reef breakwater in water depths ranging from 39 to 41 ft.

The model bathymetry extended to an offshore depth of -46 ft with a slop-
ing transition to the wave generator pit el of -80 ft. The total area reproduced
in the model was approximately 12,000 sq ft, representing about 3.7 square
miles in the prototype. Vertical control for model construction was based on
LWD, horizontal control was referenced to a local prototype grid system. A
general view of the model is shown in Figure 5.

Model waves were generated by an 80-ft-long unidirectional spectral,
electrohydraulic wave generator with a trapezoidal-shaped, vertical-motion
plunger. The vertical motion of the plunger was controlled by a computer-
generated command signal, and the movement of the plunger caused a
displacement of water which generated the required test waves. Retractable
casters mounted on the wave generator enabled it to be positioned to generate
waves from required directions.

An Automated Data Acquisition and Control System, designed and con-
structed at WES (Figure 6), was used to generate and transmit control signals,
monitor wave generator feedback, and secure and analyze wave data at
selected locations in the model. Through the use of a microvax computer, the
electrical output of capacitance-type wave gauges, which varied with the
change in water-surface elevation with respect to time, was recorded on mag-
netic disks. These data were then analyzed to obtain the parametric wave data.

Chapter 2 The Model




Figure 5. General view of model

A 2-ft (horizontal) solid layer of fiber wave absorber was placed around the
inside perimeter of the model to dampen wave energy that might otherwise be
reflected from the model walls. In addition, guide vanes were placed along the
wave generator sides in the flat pit area to ensure proper formation of the wave
train incident to the model contours.

Chapter 2 The Model
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3 Test Conditions and
Procedures

Selection of Test Conditions

Still-water level

Still-water levels (SWL’s) for harbor wave action models are selected so
that various wave-induced phenomena that are dependent on water depths are
accurately reproduced in the model. These phenomena include refraction of
waves in the project area, overtopping of harbor structures by waves, reflection
of wave energy from various structures, and transmission of wave energy
through porous structures.

Water levels on the Great Lakes vary from year to year and month to
month. Since 1860, continuous records of water levels on the Great Lakes
have been recorded and maintained. Typical seasonal variations of the Lakes
consist of high stages in the summer months and low stages in the winter
months. For Lake Michigan, the higher levels usually occur in July and lower
levels in February.

Seasonal and longer variations in the levels of the Great Lakes are caused
by variations in precipitation and other factors that affect the actual quantities
of water in the lakes. Wind, tides, and seiches are relatively short-period
fluctuations caused by the tractive force of wind blowing over the water sur-
face and by differential barometric pressures and are superimposed on the
longer period variations in the lake level. Large short-period rises in local
water levels are associated with the most severe storms, which generally occur
in the winter when the lake level is usually low; thus the probability that a
high lake level and a large wind tide or seiche will occur simultaneously is
relatively small.

An SWL of 4.0 ft LWD was selected by NCC for use during model testing.
This value represented an average SWL for the project area during major
storm events.

11
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Factors Influencing Selection of Test Wave
Characteristics

In planning the testing program for a model investigation of harbor wave-
action problems, it is necessary to select heights, periods, and directions for
test waves that allow for realistic tests of the proposed improvement plans and
an accurate evaluation of the various proposals.

Surface-wind waves are generated primarily by the interactions between
tangential stresses of wind flowing over water, resonance between the water
surface and atmospheric turbulence, and interactions between individual wave
components. The height and period of the maximum significant wave that can
be generated by a given storm depend on wind speed, length of time that wind
of a given speed continues to blow, and distance over water (fetch) which the
wind blows. Selection of test wave conditions entails evaluation of such fac-
tors as:

a. Fetch and decay distances (the latter being the distance over which
waves travel after leaving the generating area) for various directions
from which waves can approach the problem area.

b. Frequency of occurrence and duration of storm winds from the differ-
ence directions.

c. Alignment, size, and relative geographic position of the navigation
entrance to the harbor.

d. Alignments, lengths, and locations of the various reflecting surfaces
inside the harbor.

e. Refraction of waves caused by differentials in depth in the area lake-
ward of the harbor, which may create either a concentration or a diffu-
sion of wave energy at the site.

Wave Refraction

When waves move into water of gradually decreasing depth, transforma-
tions take place in all wave characteristics except wave period (to the first
order of approximation). The most important transformations with respect to
the selection of test waves characteristics are the changes in wave height and
direction of travel due to the phenomenon referred to as wave refraction. The
change in wave height and direction may be determined by using the numeri-
cal Regional Coastal Processes Wave Transformation Model (RCPWAVE)
developed by Ebersole (1985). When the refraction coefficient (K,) is deter-
mined, it is multiplied by the shoaling coefficient (K,) and gives a conversion
factor of deepwater wave heights to shallow-water values. The shoaling



coefficient, a function of wave length and water depth, can be obtained from
the Shore Protection Manual (1984).

Due to the conceptual nature of the breakwater configuration and limited
funds for the Bums Harbor project, a wave refraction analysis was not con-
ducted. Instead, a wide range of wave conditions were tested. Changes in
wave height and direction, as a result of refraction, should be covered in the
bracket of wave conditions tested. Waves were generated in the -80 ft model
pit. From this point, model contours refracted the wave trains to the struc-
tures. Critical directions of wave approach were determined by NCC to be
330, 0, and 30 deg.

Selection of Test Waves

Based on prototype wave data obtained at Bumns Harbor (McGehee and
Moritz, in preparation), NCC selected the following test wave characteristics to
be used in the model investigation.

Selected Test Waves
Direction (deg) Period (sec) Height, (ft)
330 7.0 3,59 12
9.0 3,59 12
11.6 3,5,9, 12,13, 15
0 7.0 3,59 12
9.0 3,59 12, 13, 15, 18, 195
11.6 3,5,9, 12, 13, 15, 18, 185
30 7.0 3,5,9, 12
9.0 3,59 12
11.6 3,5,9, 12

Generally, accurate recorded prototype wave conditions in the area of concern
are not available; however, repeated storm damage to the breakwater at Burns
Harbor had resulted in a study of the project which included prototype wave
measurements lakeward of the existing structures and inside the harbor. Major
storm events during 1987 and 1988 were recorded (McGehee and Moritz, in
preparation).

An analysis of the 1987 data revealed wave heights in excess of 19 ft with

significant wave periods of 11.6 sec; and wave heights of 12 ft associated with
wave periods of 7 and 9 sec.

Chapter 3 Test Conditions and Procedures
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Unidirectional wave spectra were generated for the selected test waves and
used throughout the model investigation. Plots of a typical wave spectra are
shown in Figure 7. The solid line represents the desired (target) spectra while
the dashed line represents the spectra generated by the wave machine. A typi-
cal wave train is shown in Figure 8, which depicts water surface elevation ()
versus time. The selected test waves were significant wave heights, the aver-
age height of the highest one-third of the waves or H,. In delepwater H,is
very similar to H,  (energy based wave) where H_ =4 (E)/Z, and E equals
total energy in the spectra which is obtained by integrating the energy density
spectra over the frequency range.

0.0055 | | l T | |
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0.0045
0.0040
0.0035 -
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Figure 7. Typical energy density versus frequency plots (model terms) for a
wave spectra; 9-sec, 12-ft waves

Analysis of Model Data

Relative merits of the various plans tested were evaluated by:

a. Comparison of wave heights at selected locations in the model.

14
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Figure 8. Typical wave train time series, 9-sec, 12-t test waves

b. Comparison of wave-induced current patterns and magnitudes.

c. Visual observation and wave pattern photographs.
In the wave-height data analysis, the average height of the highest one-third of
the waves (Hy), recorded at each gage location was selected. Current magni-

tudes were obtained by timing the progress of an injected dye tracer relative to
a known distance on the model surface.

Chapter 3 Test Conditions and Procedures
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4 Test and

The Tests

improvement plans

The originally proposed improvement plan consisted of a segmented reef
structure located lakeward of and parallel to the existing north breakwater.
Variations of the original improvement plan included changes in the length and
width of the reef structures, gap widths between the segments, and the con-
necting of adjacent reef structures.

Preliminary tests were conducted to determine the most efficient location of
the reef structure, (distance from the toe of existing breakwater to the toe of
proposed breakwater). Distances of 75 ft, (the most efficient distance as
defined by Carver and Wright (in preparation), 150 ft and 250 ft were tested
for representative test wave conditions. To prevent contamination of wave
data by reflected wave energy, the existing breakwater was not constructed in
the model for the transmitted wave energy test. In addition, wave pattern
photographs were obtained for representative test waves. After preliminary
testing to optimize the reef breakwater configuration, wave patterns and current
patterns and magnitudes were obtained with the existing breakwater installed.
Brief descriptions of the various improvement plans are presented in the fol-
lowing subparagraphs; dimensional details are shown in Plates 1-6.

a. Plan 1 (Plate 1) consisted of the original improvement plan. Ten sepa-
rate reef structures with crest elevations of -20 ft and crest widths of
75 ft with 1V:1.5H side slopes were placed in an area representative of
the Lake Michigan contours lakeward of and parallel to the existing
north breakwater. The reef structure consisted of 1 to 5-ton angular
armor stone with a 12-ft thickness and 100 to 2,000-1b underlayer stone
(6-ft-thick) placed on an approximate 5-ft layer of 1 to 100-1b bedding
stone. Structures originated at a point that represented the north end of
the west breakwater and extended eastward for a total length of
3,950 ft. Each segment was 250 ft long, measured from head to head,
and 350 ft long, measured from toe to toe. Distances between the toes
of the segmented structures were 50 ft.



b. Plan 2 (Plate 2) consisted of the elements of Plan 1 but each reef seg-
ment length was increased 25 ft on the east end resulting in 275-ft-long
structures (measured head to head). Distances between the toes of the
segmented structures were reduced to 25 ft.

c. Plan 3 (Plate 3) entailed the elements of Plan 2 except the openings
between the second and third, and third and fourth segments (measured
from west) were completely closed.

d. Plan 4 (Plate 4) included of the elements of Plan 3 except the opening
between the first and second segment (measured from west) was com-
pletely closed.

e. Plan 5 (Plate 4) consisted of the elements of Plan 4 but the crest widths
of the reef breakwaters were reduced from 75 to 70 ft.

/. Plan 6 (Plate 5) consisted of the elements of Plan 5 but the existing
harbor breakwater was installed.

g. Plan 7 (Plate 6) entailed the existing breakwater of Plan 6 with the
segmented reef structure removed. This plan represented existing
conditions.

Wave height tests

Wave height tests were conducted for the various reef breakwater plans
without the existing breakwater (Plans 1 through 5) for test waves for one or
more of the selected test directions. Tests involving most of the plans were
limited to the most critical incident wave direction (i.e., 0 deg). The optimum
improvement plan was tested comprehensively for waves from all three inci-
dent wave directions. Wave gauge locations for the improvement plans are
shown in Plates 1 through 4.

Wave patterns and current patterns and magnitude

Wave patterns and/or current patterns and magnitudes were obtained for the
selected test plans. Wave pattern photographs were obtained for all improve-
ment plans for representative incident waves from north. In addition, wave
patterns for the optimum plan (Plan 5) were secured for representative incident
waves from 330 and 30 deg. Current patterns and magnitudes were deter-
mined at selected locations by timing the progress of an injected dye tracer
relative to a graduated scale placed on the model floor. These tests were con-
ducted with the existing breakwater and optimum reef breakwater plan in place
(Plan 6) and for the existing breakwater with the reef breakwater removed
(Pian 7).

Chapter 4 Test and Results
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Test Results

In evaluating test results, the relative merits of the various improvement
plans were based on an analysis of measured wave heights in the lee of the
reef breakwater, current patterns and magnitudes, and visual observations.
Model wave heights (significant wave height or Hy) were tabulated to show
measured values at selected locations. Wave-induced current patterns and
magnitudes were superimposed on photographs for the plan and wave condi-
tion tested. The north test direction, being the predominant angle of wave
attack for storm waves, was used for all preliminary testing.

Test plans

Wave height tests for Plans 1 through 3 were conducted with 39 wave
gauge locations. Gauges 1 through 13 were located 75 ft leeward of the shore-
ward toe of the proposed reef breakwater. Gauges 14 through 26 were 150 ft
leeward of the toe of proposed reef breakwater, and gauges 27 through 39
were 250 ft leeward from the toe of the proposed structure. By comparing
wave heights at various distances from the proposed reef structure, three
dimensional wave effects could be effectively compared to determine the most
suitable location of the reef breakwater (relative to the existing breakwater).
The wave gauges were placed behind the center of each proposed reef break-
water segment and each gap between reef breakwater segments.

Results of wave height tests for Plan 1 are presented in Table 1 for test
waves from 0 deg. Wave heights1 ranged from 14.2 (gauge 9) to 16.4 ft
(gauges 1 and 3) for 11.6 sec, 19.5-ft test waves at a distance 75 ft leeward of
the shoreward toe of the reef. For the 150-ft distance, wave heights ranged
from 14.1 ft (gauge 22) to 16.4 ft (gauge 14) for 11.6 sec, 19.5-ft test waves
and the 250-ft distance location from the toe of the reef yielded wave heights
ranging from 13.5 ft (gauge 35) to 16.4 ft (gauge 36). With the 75-, 150-, and
250-ft distances, wave heights exceeded the established 15-ft wave-height
criteria at nine, nine, and eight wave gauge locations, respectively. Average
wave heights in the lee of the Plan 1 reef breakwater were 154, 15.4, and
15.2 ft, respectively, for the 75-, 150-, and 250-ft distances. Typical wave
patterns for Plan 1 are shown in Photos 1 through 6.

Wave heights obtained for Plan 2 are presented in Table 2 for test waves
from O deg. For 11.6-sec, 19.5-ft incident waves, wave heights ranged from
14.2 (gauges 5 and 9) to 16.1 ft (gauges 1 and 3) at a distance 75 ft leeward of
the shoreward toe of the reef; 13.9 (gauge 22) to 16.2 ft (gauge 14) at the
150-ft distance; and 13.1 (gauge 35) to 16.0 ft (gauge 27) at the 250-ft dis-
tance. With the 75-, 150-, and 250-ft distances, wave heights exceeded the
established 15.0 ft wave height criterion at four, six, and six gauge locations,

1 Refers to significant wave heights throughout report.



respectively. Average wave heights in the lee of the Plan 2 reef breakwater
were 15.0, 15.0, and 14.7 ft, respectively, for the 75-, 150-, and 250-ft dis-
tances for the 11.6-sec, 19.5-ft incident wave conditions. Wave heights at the
western gauge locations, where the reef structure was angled, exceeded the
criterion by greater values than at the other gauge locations. The 75-ft dis-
tance resulted in wave heights within the criterion for gauges 5 through 13.
Typical wave patterns for Plan 2 are shown in Photos 7 through 12.

Wave height data collected for Plan 3 for test waves from O deg are pre-
sented in Table 3. For 11.6-sec, 19.5-ft test waves, wave heights ranged from
13.9 (gauge 9) to 15.1 ft (gauge 10) at the distance 75 ft leeward of the shore-
ward toe of the reef, 13.3 (gauge 22) to 15.4 ft (gauge 23) for the distance
150 ft leeward of the shoreward reef toe, and 13.1 (gauge 35) to 15.7 ft
(gauges 36 and 38) at the distance 250 ft leeward from the shoreward toe of
the reef breakwater. With the 75-, 150-, and 250-ft distances, significant wave
heights exceeded the established wave height criterion at one, two, and three
gauge locations, respectively. Average wave heights in the lee of the Plan 3
breakwater were 14.6, 14.5, and 14.5 ft, respectively, for the 75-, 150-, and
250-ft distances for the 19.5-ft incident waves. Plan 3 test results indicated
that by closing of the openings that were more normal to the predominant
incoming 0-deg (north) waves, wave heights were reduced in the lee of that
portion of the reef breakwater. Typical wave patterns for Plan 3 are shown in
Photos 13 through 18. '

A comparison of wave height data obtained for Plans 1 through 3 for the
75-, 150-, and 250-ft distances shoreward of the reef toe are presented graphi-
cally for 19.5-ft waves in Plates 7 through 9. At each distance, the data indi-
cate that Plan 3 is the best of the plans relative to meeting the established
wave height criterion. The data also reveal that the 75-ft distance leeward of
the reef toe meets the criterion more often that the other distances. Also, the
75-ft distance would be located in more shallow water depths than the 150-
and 250-ft distances, and would require less volume of stone. Therefore, con-
sidering wave protection provided and costs, the 75-ft distance was selected as
optimal and used for additional testing.

An additional wave gauge (gauge 1A, Plate 3) was placed 75 ft leeward of
the first and second segments of the structure for Plan 3. Wave height tests
for 11.6-sec, 19.5-ft test waves indicated wave heights of 16.8 ft at this loca-
tion (1.8 ft in excess of the criterion). By closing the opening (Plan 4), wave
heights were reduced to 14.4 ft. A comparison of wave heights obtained at
gauge 1A for Plans 3 and 4 for all incident wave conditions tested is shown in
the following tabulation.

Chapter 4 Test and Results
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Test Waves from 0 deg Plan 3 Plan 4
Period, sec Height, ft Wave Height, f Wave Height, it
7.0 121 10.6 9.8
9.0 12.0 10.8 10.0
11.6 12.0 i0.8 10.1
11.6 161 13.6 12.0
116 i8.0 15.6 13.5
11.6 19.6 16.8 14.4

Wave height test results for Plan 4 at all gauge locations are presented in
Table 4 for test waves from 0 deg. Wave heights ranged from 14.0 ft
(gauge 9) to 15.1 fi (gauge 10) for 11.6-sec, 19.5-ft test waves. The estab-
lished 15.0-ft wave height criterion was exceeded by only 0.1 ft at one gauge
location. Average wave heights were 14.6 ft behind the structure. Typical
wave patterns for Plan 4 are shown in Photos 19 through 24.

An analysis of stone volumes for the Plan 4 reef breakwater by NCC indi-
cated that the plan’s costs slightly exceeded calculated benefits. The 75-ft
crest width was, therefore, reduced to 70 ft (Plan 5) in an effort to reduce
costs. Wave heights were for Plans 4 and 5 for 11.6-sec, 19.5-ft test waves
from 0 deg were plotted for comparison (Plate 10). For Plan 5, wave heights
ranged from 14.0 (gauge 7) to 15.1 ft (gauges 3 and 10) with the established
wave height criterion exceeded by 0.1 ft at two gauge locations. Average
wave heights were 14.7 ft in the lee of the reef breakwater. Based on damage
curves (structure damage versus incident wave height; Carver, Dubose, and
Wright, 1993), 15.1-ft incident waves should result in damages of only about
one quarter of one percent, which was considered acceptable by NCC.

Comprehensive wave height test results for Plan 5 are presented in Tables 5
through 7 for test waves from the 0-, 30-, and 330-deg directions, respectively.
Wave transmission coefficients, available for the existing breakwater from two-
dimensional model tests (Carver and Wright, in preparation), were applied to
average wave heights obtained in the lee of the reef breakwater. This method
was used to determine anticipated wave heights in the existing harbor for oper-
ational (5- and 13-ft incident waves) wave conditions. The analysis revealed
that 7- and 9-sec, 5-ft incident waves from all three directions would result in
wave heights in the existing harbor within the established 1.0-ft wave height
criterion. However, calculations for the 11.6-sec, 5-ft waves resulted in wave
heights of 1.2 ft in the existing harbor for test waves from 30 and 330 deg,
and 1.3 ft for test waves from 0 deg. The recurrence of 11.6-sec, 5-ft waves at
the site are not very common and slight exceedence of the criterion for these
conditions was considered acceptable by NCC. For 11.6-sec, 13-ft incident
waves from 0 deg, calculated wave heights in the existing harbor were within
the established 3.0-ft wave height criterion. Calculations for test waves from



330 deg, however, revealed wave heights in the harbor of 3.1 ft, or 0.1 ft
above the criterion. Calculations using maximum waves generated from

30 deg (12-ft waves) resulted in wave heights within the established criterion.
Typical wave patterns obtained for Plan 5 for representative test waves from
the various directions are shown in Photos 25 through 40.

Wave-induced current patterns and magnitudes secured for Plan 6 are
shown in Photos 41 through 50. For test waves from 330 deg, currents
generally moved from east to west for 7-sec, 5-ft waves, and from west to east
for 9-sec, 9-ft and 11.6-sec, 15-ft waves. Current movement was from east to
west for all test waves from the 0- and 30-deg directions. In general, veloci-
ties between the reef breakwater and the existing breakwater were slightly
higher than those lakeward of the reef structure. Maximum velocities obtained
were 0.6, 1.8, and 1.5 fps for the 330-, 0-, and 30-deg directions, respectively.
Where current magnitudes are not shown in the photos, values were less than
1 fps. Typical wave patterns for Plan 6 also are shown in Photos 41 through
50.

Wave-induced current patterns and magnitudes obtained for Plan 7 are
presented in Photos 51 through 60. For test waves from 330 deg, currents
moved from east to west at some locations and from west to east at others.
Test waves from 0 and 30 deg resulted, in general, in current movement from
east to west. Maximum velocities obtained lakeward of the existing break-
water were 0.7, 2.1, and 0.7 fps for the 330-, 0-, and 30-deg directions, respec-
tively. Typical wave patterns secured for Plan 7 are also shown in Photos 51
through 60.

Discussion of test results

The originally proposed reef breakwater plan (Plan 1) resulted in excessive
wave conditions on the leeward side of the structure in several locations. For
11.6-sec, 19.5-ft incident waves from 0O deg, wave heights exceeded the estab-
lished 15.0-ft wave height criterion at over half the gauge locations in the lee
of the reef breakwaters, regardless of distance from the structure (75-, 150-,
and 250-ft).

A 25-ft increase in the length of each reef segment (Plan 2) improved wave
conditions in the lee of the structure, however, wave heights behind the curved
portion of the reef breakwaters were in excess of the 15-ft wave height crite-
rion. Closing of the westernmost three openings in the curved portion of the
reef breakwaters, in conjunction with the 25-ft Plan 2 reef extensions (Plan 4),
resulted in wave heights in the lee of the reef breakwater within the 15.0-ft
criterion, with the exception of one gauge location which exceeded the crite-
rion by 0.1 ft, at the 75-ft distance.

Of the three distances (75-, 150-, and 250-ft) tested, which represented
spacing between the proposed shoreward toe of the reef breakwaters and the
lakeward toe of the existing breakwater, the 75-ft distance was considered
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optimum. This distance provided the greatest wave protection and will require
less stone to construct than the other distances tested.

By reducing the 75-ft-wide crest of the Plan 4 reef breakwater configuration
to 70 ft in width (Plan 5), wave heights in the lee of the structure will exceed
the 15.0-ft criterion by only 0.1 ft at two gauge locations for 11.6-sec, 19.5-ft
incident wave conditions from O deg. Average wave heights in the lee of the
structure also will increase by only 0.1 ft for these conditions. Since antici-
pated structure damages for 15.1-ft waves are considered to be acceptable by
NCC and reduced stone volumes will reduce construction costs significantly,
the 70-ft-wide Plan 5 reef breakwater configuration was considered optimum
for 11.6-sec, 19.5-ft incident wave conditions from 0 deg. Wave heights
expected in the existing harbor (calculated by application of wave transmission
coefficients obtained from two-dimensional model tests for the existing break-
water; Carver and Wright, in preparation) for 13-ft incident waves will result
in the 3.0-ft wave height criterion being exceeded by 0.1 fi for one-wave direc-
tion (330 deg). For 5-ft incident wave conditions with 7- and 9-sec periods,
wave heights expected in the existing harbor will meet the 1.0-ft wave height
criterion from all three test directions. However, for 5-ft incident waves with a
11.6-sec period, expected wave heights in the existing harbor will exceed the
criterion by 0.2 to 0.3 ft, depending upon direction of wave approach. Since
7- and 9-sec, 5-ft waves commonly occur, and 11.6-sec, 5-ft waves occur
infrequently at the site, NCC considered the test plan (Plan 5) acceptable. It
appeared not to be economically justifiable to construct a plan that would
reduce wave heights by 0.1 to 0.3 ft in the existing harbor for 13- and 5-ft
incident waves, respectively, considering the frequency of occurrence of the
conditions that exceeded the criteria.

Examination of wave-induced current patterns and magnitudes indicated
similar conditions for existing conditions and the optimum reef breakwater
plan lakeward of the existing breakwater. Maximum velocities were 2.1 fps
for existing conditions and 1.8 fps for the reef breakwater plan. The installa-
tion of the reef structure should, therefore, have no adverse impact (scour,
sedimentation, etc.) due to current effects.
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Conclusions

Based on results of the coastal hydraulic model investigation reported
herein, it is concluded that:

a.

The originally proposed reef breakwater plan (Plan 1) will result in
excessive wave conditions (in excess of the established 15.0-ft wave
height criterion) for 11.6-sec, 19.5-ft incident waves from 0 deg on the
leeward side of the proposed reef breakwaters, regardless of its distance
from the existing structure.

The shoreward toe of the reef breakwater should be located 75-ft lake-
ward of the existing breakwater’s lakeward toe. This distance provides
greater wave protection, with less stone volumes, than the other dis-
tances tested.

Of the reef breakwater configurations tested with the 75-ft crest widths,
Plan 4 (275-ft-long reef segments with three westernmost openings
closed) was acceptable considering wave heights obtained in the lee of
the structure for 11.6-sec, 19.5-ft incident waves from O deg.

The 75-ft-wide crest of the Plan 4 reef breakwater configuration can be
reduced to 70 ft in width (Plan 5) and still provide acceptable wave
protection in the lee of the structure for 11.6-sec, 19.5-ft incident wave
conditions from 0 deg.

The Plan 5 reef configuration (275-ft-long reef segments with three
westernmost openings closed and 70-ft crest widths) will result in
acceptable wave heights in the existing harbor for 7- to 11.6-sec, 5-ft
and 11.6-sec, 13-ft incident wave conditions.

Considering wave protection provided in the lee of the reef breakwater
and in the existing harbor for various incident wave conditions versus
volume of construction materials required, the Plan 4 reef breakwater
configuration was selected as optimum, based on the plans tested.
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g. The optimum reef breakwater configuration, in conjunction with the
existing brecakwater (Plan 6), will have no adverse impacts on

wave-induced current patterns and/or magnitudes lakeward of the exist-
ing structure.
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Photo 1. Typical wave patterns for Plan 1; 7-sec, 12-ft waves from 0 deg

Photo 2. Typical wave patterns for Plan 1; 9-sec, 12-ft waves from 0 deg




Photo 3. Typical wave patterns for Plan 1; 11.6-sec, 12-ft waves from 0 deg

Photo 4. Typical wave patterns for Plan 1; 11.6-sec, 15-ft waves from 0 deg




Photo 5. Typical wave patterns for Plan 1; 11.6-sec, 18-ft waves from 0 deg

Photo 6. Typical wave patterns for Plan 1; 11.6-sec, 19.5-ft waves from 0 deg




Photo 7. Typical wave patterns for Plan 2; 7-sec, 12-ft waves from 0 deg
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Photo 8. Typical wave patterns for Plan 2; 9-sec, 12-ft waves from 0 deg




Photo 9. Typical wave patterns for Plan 2; 11.6-sec, 12-ft waves from 0 deg

Photo 10. Typical wave patterns for Plan 2; 11.6-sec, 15-ft waves from 0 deg




Photo 11. Typical wave patterns for Plan 2; 11.6-sec, 18-ft waves from 0 deg

Photo 12. Typical wave patterns for Plan 2; 11.6-sec, 19.5-ft waves from 0 deg




Photo 17. Typical wave patterns for Plan 3; 11.6-sec, 18-ft waves from 0 deg

Photo 18. Typical wave patterns for Plan 3; 11.6-sec, 19.5-ft waves from 0 deg




Photo 19. Typical wave patterns for Plan 4; 7-sec, 12-ft waves from 0 deg
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Photo 20. Typical wave patterns for Plan 4; 9-sec, 12-ft waves from 0 deg
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Photo 21. Typical wave patterns for Plan 4; 11.6-sec, 12-ft waves from 0 deg

Photo 22. Typical wave patterns for Plan 4; 11.6-sec, 15-ft waves from 0 deg




Photo 23. Typical wave patterns for Plan 4; 11.6-sec, 18-ft waves from 0 deg

Photo 24. Typical wave patterns for Plan 4; 11.6-sec, 19.5-ft waves from 0 deg
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Photo 25. Typical wave patterns for Plan 5
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Photo 26. Typical wave patterns for Plan 5
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Photo 30. Typical wave patterns for Plan 5

330 deg
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Photo 31. Typical wave patterns for Plan 5; 7-sec, 12-ft waves from 0 deg

e
S
ik 2

Fis

Photo 32. Typical wave patterns for Plan 5; 9-sec, 12-ft waves from 0 deg




Photo 33. Typical wave patterns for Plan 5; 11.6-sec, 12-ft waves from 0 deg

Photo 34. Typical wave patterns for Plan 5; 11.6-sec, 15-ft waves from 0 deg




Photo 35. Typical wave patterns for Plan 5; 11.6-sec, 18-ft waves from 0 deg

Photo 36. Typical wave patterns for Plan 5; 11.6-sec, 19.5-ft waves from 0 deg




Photo 37. Typical wave patterns for Plan 5; 7-sec, 12-ft waves from 30 deg

Photo 38. Typical wave patterns for Plan 5; 9-sec, 12-ft waves from 30 deg




Photo 39. Typical wave patterns for Plan 5; 11.6-sec, 9-ft waves from 30 deg

Photo 40. Typical wave patterns for Plan 5; 11.6-sec, 12-ft waves from 30 deg
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